|国家预印本平台
首页|广义数据场及其在人脸表情识别中的应用

广义数据场及其在人脸表情识别中的应用

Generaliazed Data Field and Its Application for Expression Recognition

中文摘要英文摘要

为了更好地估计数据场势函数,本文提出广义数据场势函数估计,并且以人脸识别为例进行研究。数据场是根据物理场的思想理解和描述数据特点。鉴于在多维空间中目前存在的势函数的不足,把影响因子各向同性变为各向异性,使数据场进一步扩展为广义数据场。对于势函数估计的精度,其好坏主要取决于影响因子,而单位势函数的选择并不太重要。人脸的表情丰富多样,变化不定。不同的表情脸其实就是人脸不同部位作用程度不同的结果。本文利用JAFFE表情脸图像库进行实验,整体识别率高达94.3%。结果证明,该方法能够较有效地识别人脸。

In this paper, a generalized data field is proposed to better estimate the potential function in multi-dimensional data field, along with a case study on face recognition. Data field is a method to understand and depict the data characteristics in the context of physics. In view of the inadequacy of the existent potential function, the data field is further developed to become the generalized data field by extending the impact factor from isotropy to anisotropy in multidimensional space. Focusing on the accuracy of potential function estimation, the performance of potential function estimation is primarily determined by impact factors and only in a minor way by unit potential function. Facial expressions are various, complicated and changeable, and they are actually caused by the changing interaction among different partitions in a face. Thus a case study on face recognition is experimented using JAFFE database. The whole recognition rate is up to 94.3%. The final results show that the generalized data field is valid for face recognition.

李英、王树良、谢媛

计算技术、计算机技术

计算机应用技术数据场影响因子人脸识别

applied computation technologydata fieldinfluenced factorface recognition

李英,王树良,谢媛.广义数据场及其在人脸表情识别中的应用[EB/OL].(2012-05-11)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201205-170.点此复制

评论