斜投影核鉴别器的增量学习:证明及示例
Incremental learning of oblique projection-based kernel discriminator: Proof and example
分类器设计可归结为函数逼近问题。先前,我们在再生核Hilbert空间中,利用斜投影将某模式类别从其它类别中鉴别开来,建立了斜投影核鉴别器设计理论,并给出了对应的增量学习算法,以解决分类器在线训练问题和参数稀疏化问题。在这里,我们给出这些理论和算法的有关定理的详细证明,并以基于双通道采样的信号动态恢复为例,说明如何应用理论和算法解决相关工程问题。
he problem of classifier design may be set in the framework of function approximation.Previously, we proposed to solve the problem in a Reproducing Kernel Hilbert Space (RKHS) continuously defined onthe pattern feature space, adopted oblique projection to discriminate a pattern class, called the target class,from other classes, by obliquely projecting a pattern feature vector onto the subspace spanned by the training patternfeatures of the target class, along the subspace spanned by those of other classes, and provided an incrementallearning algorithm for online training and sparsification of the discriminator. In this manuscript, we provide the proofsof the related theorems and an application example in incremental restoration of signals using two-channel samples.
刘本永
计算技术、计算机技术
核非线性分类器核鉴别器斜投影增量学习信号恢复
Kernel-based nonlinear classifierkernel discriminatoroblique projectionincremental learningsignal restoration
刘本永.斜投影核鉴别器的增量学习:证明及示例[EB/OL].(2013-01-14)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201301-584.点此复制
评论