基于TR-BERT和注意力网络的多文档推理方法
Multi-Document Inference Method Based on TR-BERT and Attention Networks
多文档推理任务中,与答案相关的信息可能存在于多个相关文本中,同时这些信息有时与问题不直接关联。为了解决电力营业厅问答场景下多文档推理准确率和效率兼顾的问题,本文提出了基于预训练模型和注意力网络的多级推理方法。模型采用预训练模型保留从段落文本和问题中提取到的丰富语义,再通过注意力机制评价候选项的相关性。同时,由于问答场景的实时性要求,我们采用了基于动态令牌约简的TR-BERT预训练模型并简化注意力网络;最终在WikiHop数据集中的实验结果表明,模型在计算速度和准确性两个维度总体上展现出了优势,为智能问答系统中的多轮问答功能提供了有效的方法支撑。
In the task of multi-document inference, information related to the answer may reside across multiple relevant texts, and sometimes this information is not directly associated with the question. To address the challenge of balancing accuracy and efficiency in multi-document inference for the electric utility customer service scenario, this paper proposes a multi-level inference method based on pre-trained models and attention networks. The model utilizes pre-trained models to preserve the rich semantics extracted from paragraph texts and questions, and then evaluates the relevance of candidates through an attention mechanism. Furthermore, due to the real-time requirements of the question-answering scenario, we employ the TR-BERT pre-trained model based on dynamic token reduction and simplify the attention network. Experimental results on the WikiHop dataset demonstrate that the model overall exhibits advantages in both computational speed and accuracy, providing effective methodological support for the multi-turn question-answering functionality in intelligent question-answering systems.
林荣恒、赵佳祺
自动化技术、自动化技术设备计算技术、计算机技术
计算机技术自然语言处理多文档推理智能问答
computer technologynatural language processingmulti-document inferenceintelligent question answering
林荣恒,赵佳祺.基于TR-BERT和注意力网络的多文档推理方法[EB/OL].(2024-03-20)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/202403-249.点此复制
评论