边缘计算下基于Transformer的安全高效自然语言处理
Secure and Efficient Transformer-based Natural Language Processing in Edge Computing
在encoder-decoder架构的驱动下,Transformer的应用扩展到自然语言处理(NLP)领域。随着模型参数的增加,本地服务不能满足需求,云端和边缘平台的推理服务应运而生。然而,当用户使用云端Transformer模型时,需要公开他们的隐私输入,这会对用户数据安全造成威胁。现有工作已经做出了一些努力来解决基于Transformer推理服务的隐私问题,但其推理效率较低,不能满足实际场景需要。为此,本文通过结合加法秘密分享和函数秘密分享,提出了一种高效的基于三方Transformer的NLP系统,TFCrypt。本文设计了一种高效的安全嵌入协议,通过使用函数秘密分享在离线阶段生成偏移元组,并在交互阶段使用点积计算嵌入结果来完成安全嵌入计算。此外,还设计了一些列协议来优化推理效率。最后,本文在LAN和WAN环境下进行了一系列实验,结果表明,相比于最新的方案,TFCrypt的推理速度在LAN下有1.53 ~ 33.75倍的提升,在WAN下有1.85 ~ 33.97倍的提升。
riven by the encoder-decoder architecture, Transformer has extended its applications into natural language processing (NLP). With the increase of model parameters, inference services in cloud and edge platforms have emerged. However, when users utilize these Transformer models, they need to expose their private inputs. Some efforts have beenmade to address the privacy issues for Transformer-based inference services, but their inference efficiency has been notably low. To this end, we propose an efficient three-party transformer-based NLP system in edge computing, TFCrypt, by combining additive secret sharing and function secret sharing.This paper devises an efficient secure embedding protocol by generating the offset tuple in the offline phase using function secret sharing and computing the embedding item during the interaction phase using dot products. In addition, a number of protocols are designed to optimize the inference efficiency. Finally, the paper conduct a series of experiments in both LAN and WAN environments, showing that this paper improves the processing efficiency by 1.53 ~ 33.75 times in LAN and 1.85 ~ 33.97 times in WAN compared to existing schemes.
张金国、黄勤龙
计算技术、计算机技术通信无线通信
云计算安全多方计算自然语言处理函数秘密分享
loud ComputingSecure Multi-Party ComputationNatural Language ProcessingFunction Secret Sharing
张金国,黄勤龙.边缘计算下基于Transformer的安全高效自然语言处理[EB/OL].(2023-12-25)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202312-76.点此复制
评论