|国家预印本平台
首页|基于非线性降维算法的人脸识别

基于非线性降维算法的人脸识别

HE NONLINER DIMENSIONALITY REDUCTION METHODS FOR FACE RECOGNITION

中文摘要英文摘要

人脸识别技术是模式识别与机器视觉领域最有挑战的研究课题之一。本文着重介绍它的核心部分——特征提取与识别技术。 本文在收集和分析大量近年来国内外相关学术论文及文献的基础上,实现了完整的基于PCA的线性识别算法和基于ISOMAP的非线性识别算法,并在UMIST人脸库中用“数据可视化”的方式分析了引入流形学习方法的必要性。文中采用ISOMAP算法,同时与线性算法PCA作对比,得到结论:当数据处于非线性嵌入子流形上时,基于流形学习算法的引入是必要且有效的。

he technique of human face recognition is a challengeable subject in the field of pattern recognition and machine vision. This paper mainly focused on its core part—feature the extraction and human face recognition algorithms. The paper collected and analyzed mass of recent internal and foreign papers and literatures about human face recognition. According to the understanding to the relevant papers and literatures, I implemented a complete linear human face recognition algorithm base on PCA and a non-linear human face recognition algorithm base on ISOMAP. We tested our algorithms on the UMIST dataset. Finally, the necessity and validity are confirmed via data visualization technique.

张洁

计算技术、计算机技术

人脸识别,主成分分析,流形,等距映射,分类器

face recognition,PCA,manifold,ISOMAP,classifier

张洁.基于非线性降维算法的人脸识别[EB/OL].(2008-07-08)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/200807-185.点此复制

评论