|国家预印本平台
首页|基于DCNN分类的图像相关度度量

基于DCNN分类的图像相关度度量

中文摘要英文摘要

在衡量图像之间的相关度时,图像的物理特征(颜色分布、灰度值等)所能表达的内容可能并非十分全面,因此有必要参考图像视觉所包含的语义信息衡量图像之间的相关度。为此提出了一种基于深度卷积神经网络(deep convolutional neural networks)分类模型的度量图像相关度的方法,利用模型为图像绑定来自于WordNet的语义标签,并参照WordNet结构对标签进行过滤和扩展,利用概念集合计算图像相关度。与人工判定的样本数据比较,Pearson相关系数峰值能够达到0.73,证明该方法在衡量图像相关度时具有一定的效果。

When measuring the similarity between images, the content of the physical features (Color Layout Descriptor, Gray Histogram Descriptor, etc.) may not be very comprehensive, so it is necessary to refer to the semantic information contained in image vision to measure the relativity between images. In this paper, we propose a method based on Deep Convolutional Neural Networks classification model to measure image correlation. The model is used to bind the semantic label from WordNet, and the label is filter and expand according to WordNet structure, and the concept set is used to calculate image relativity. Compared with the manually determined sample data, the peak value of Pearson correlation coefficient can reach 0.73, which proves that this method has a certain effect in the measurement of image correlation.

王会勇、孙晓领、谢春杰、张晓明

10.12074/201811.00196V1

计算技术、计算机技术电子技术应用

相关度深度卷积神经网络WordNet过滤扩展

王会勇,孙晓领,谢春杰,张晓明.基于DCNN分类的图像相关度度量[EB/OL].(2018-11-29)[2025-08-18].https://chinaxiv.org/abs/201811.00196.点此复制

评论