|国家预印本平台
首页|Complex solid solution electrocatalyst discovery by prediction and high-throughput experimentation

Complex solid solution electrocatalyst discovery by prediction and high-throughput experimentation

Complex solid solution electrocatalyst discovery by prediction and high-throughput experimentation

来源:Arxiv_logoArxiv
英文摘要

Efficient discovery of electrocatalysts for electrochemical energy conversion reactions is of utmost importance to combat climate change. With the example of the oxygen reduction reaction we show that by utilising a data-driven discovery cycle, the multidimensionality challenge offered by compositionally complex solid solution (high entropy alloy) electrocatalysts can be mastered. Iteratively refined computational models predict activity trends for quinary target compositions, around which continuous composition spread thin-film libraries are synthesized. High-throughput characterisation datasets are then input for refinement of the model. The refined model correctly predicts activity maxima of the exemplary model system Ag-Ir-Pd-Pt-Ru for the oxygen reduction reaction. The method can identify optimal complex solid solutions for electrochemical reactions in an unprecedented manner.

Olga A. Krysiak、Christian M. Clausen、Alfred Ludwig、Valerie Strotk?tter、Bin Xiao、Jan Rossmeisl、Thomas A. A. Batchelor、Wolfgang Schuhmann、Tobias L?ffler、Alan Savan、Jack K. Pedersen

10.1002/anie.202014374

电化学工业

Olga A. Krysiak,Christian M. Clausen,Alfred Ludwig,Valerie Strotk?tter,Bin Xiao,Jan Rossmeisl,Thomas A. A. Batchelor,Wolfgang Schuhmann,Tobias L?ffler,Alan Savan,Jack K. Pedersen.Complex solid solution electrocatalyst discovery by prediction and high-throughput experimentation[EB/OL].(2020-09-17)[2025-08-11].https://arxiv.org/abs/2009.08529.点此复制

评论