UavdNet:轻量化无人机图像目标检测网络
UavdNet:Lightweight Unmanned Aerial Vehicle Image Object Detection Network
随着无人机技术的迅速发展,其在环境监测、交通监管、危险区域侦查等领域的广泛应用日益显著。本研究提出了一种轻量化基于深度学习的无人机图像目标检测网络UavdNet(Unmanned Aerial Vehicle Image Object Detection Network),适用于无人机等边缘设备,能够实时进行目标检测任务的嵌入式应用。UavdNet在MobileNet网络基础上进行了重构与优化,加入了改进的通道空间融合注意力机制CASA,有效的解决了无人机图像背景复杂的问题。并且设计了新的的特征融合模块,旨在获取更全面的特征信息,提高了小目标的检测能力。在重组的VisDrone上进行了网络性能评估,UavdNet在保持低运算复杂性的同时,展现出较高的检测准确性,在重组VisDrone数据集上达到了67.1\%的最高准确率,相比于同参数量的网络提高了0.4\%。
s drone technology rapidly evolves, its widespread applications in environmental monitoring, traffic management, and hazardous area reconnaissance have become increasingly significant. This study introduces a new lightweight Unmanned Aerial Vehicle image target Detection Network(UavdNet) suitable for edge devices like drones, enabling real-time embedded target detection tasks. UavdNet, built upon and optimized from the MobileNet network, incorporates an improved channel-space fusion attention mechanism, CASA, effectively addressing the complex backgrounds in drone images. Additionally, a new feature fusion module is designed to capture comprehensive feature information, enhancing the detection capability for small objects. Performance evaluations on the reorganized VisDrone datasets demonstrated that UavdNet maintains low computational complexity while achieving high detection accuracy, reaching peak accuracies of 67.1\% on the reorganized VisDrone datasets, respectively. This marks an improvement of 0.4\% over networks with similar parameter volumes.
牛湛淼、谷利泽
航空航天技术自动化技术、自动化技术设备电子技术应用
无人机拍摄图像轻量化目标检测注意力机制特征融合
drone captured imageslightweight target detectionattention mechanismFeature Fusion
牛湛淼,谷利泽.UavdNet:轻量化无人机图像目标检测网络[EB/OL].(2024-03-18)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/202403-227.点此复制
评论