一种用于稀疏表示的原子库设计新方法
n Algorithm of Dictionary Design for Sparse Representation
提出了一种原子库设计方法Q-Moore Penrose Inverse (Q-MPI),用来实现信号的稀疏表示。对于给定的训练信号集,寻求一个原子库,使每个信号在该原子库上有较为稀疏的表示。Q-MPI也是一种迭代优化方法,每次迭代包含信号的稀疏表示和原子库的更新两步。Q-MPI是灵活的,可以使用任何一种稀疏编码方法(如匹配追踪,基追踪)来进行信号的稀疏表示。与其它方法的不同在于,Q-MPI基于Moore Penrose逆更新原子库。另外,当训练集中的样本数目较大时,Q-MPI采用分组策略以避免算法陷入局部最优。从而提高方法的性能。与常规方法的对比试验表明,Q-MPI具有相当或更优的性能。将分组策略与其它方法结合,同样可以提高其性能。此外,本文以含噪图像构造训练集,应用Q-MPI方法获得原子库,在该原子库上可以实现图像的有效降噪。
n algorithm was proposed for adapting dictionaries to achieve sparse signal representation. Given a set of training signals, we seek a dictionary that leads to the best representation for each member in this set under strict sparsity. Q-Moore Penrose Inverse (Q-MPI) algorithm is also an iterative method that alternates between sparse representation of the training signals based on the current dictionary, and update of the dictionary to better fit the data. Q-MPI algorithm is flexible and can work with any sparse coding method (e.g., Matching pursuit, Orthogonal Matching Pursuit, Basis Pursuit). Different from other algorithms, Q-MPI updates dictionary based on Moore Penrose Inverse. Besides, Q-MPI algorithm divides training samples into a few groups when the amount of it is relatively large. In this way, Q-MPI algorithm could avoid trapping into local optimum and achieve a satisfying result. We compare Q-MPI algorithm to state-of-the-art algorithms, and the results show that Q-MPI algorithm is equivalent or superior to the others. Combining grouping strategies with other dictionary learning methods, they could be improved in some ways. Furthermore, we employ Q-MPI to train a dictionary based on noisy images, then use it to achieve image denoising.
王国栋、徐金梧、黎敏、阳建宏
计算技术、计算机技术
原子库设计稀疏表示训练样本分组Moore Penrose逆
dictionary designsparse representationtraining samples groupingMoore Penrose Inverse
王国栋,徐金梧,黎敏,阳建宏.一种用于稀疏表示的原子库设计新方法[EB/OL].(2010-11-30)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201011-718.点此复制
评论