基于多尺度径向基函数和改进粒子群优化算法的时频分析方法
novel time-frequency analysis approach using multiscale radial basis functions aided by a modified particle swarm optimization(PSO) algorithm
提出一种基于多尺度径向基函数(multiscale radial basis functions,MRBF)展开式的时变自回归(time-varying autoregressive, TVAR)建模方法,并应用于仿真非平稳脑电数据建模及其功率谱估计。在提出的新颖参数建模框架中,由于MRBF具有多种动态过程的逼近特性,能够更好地辨识非平稳信号中的时变参数,因而TVAR 模型的时变系数采用MRBF进行逼近,时变建模问题被简化为MRBF的最优尺度选择和时不变参数估计问题,这些问题可以分别用一种改进的粒子群优化(particle swarm optimization,PSO)算法和最小二乘法有效解决。为了验证提出方法的有效性,提出方法用于分析仿真脑电信号,并将其与递推最小二乘法(recursive least squares,RLS)和勒让德多项式扩展法进行比较,结果证实提出方法确实可以得到比传统递推最小二乘法和勒让德多项式扩展法更高的时频分辨率。
n efficient time-varying autoregressive (TVAR) modeling approach using the multiscale radial basis functions (MRBF) method is presented for analyzing nonstationary signal processing, with application to artificial EEG data modeling and power spectral estimation. In the new parametric modeling framework, the time-dependent coefficients in the TVAR model are approximated by using MRBF that can better identify time-varying parameters with a variety of dynamic processes in nonstationary signals. Thus, the time-varying modeling problem is simplified to optimal scale determination of MRBF and parameter estimation, which can be effectively resolved by a modified particle swarm optimization (PSO) method and an ordinary least square (OLS) algorithm, respectively. To evaluate the effectiveness of the proposed approach, a comparison with recursive least squares (RLS) and Legendre polynomials expansion method for a synthesized EEG signal is performed. Results demonstrate the proposed approach can indeed provide optimal time-frequency resolution as compared to RLS and Legendre polynomials expansion.
谈思睿、刘青、李阳
计算技术、计算机技术自动化技术、自动化技术设备通信
系统辨识勒让德多项式多尺度径向基函数改进PSO算法时变模型时频谱
System identificationLegendre polynomialsMultiscale radial basis functionsModified PSO algorithmTime-varying modelsTime-frequency spectra.
谈思睿,刘青,李阳.基于多尺度径向基函数和改进粒子群优化算法的时频分析方法[EB/OL].(2015-04-07)[2025-08-05].http://www.paper.edu.cn/releasepaper/content/201504-131.点此复制
评论