基于深度学习的跨项目软件缺陷预测
ross-project Software Defect Prediction Based on Deep Learning
跨项目软件缺陷预测利用一个或者多个源项目的历史数据建立缺陷预测模型,然后对目标项目进行缺陷预测。目前跨项目软件缺陷预测领域中还存在一些问题,针对跨项目软件缺陷预测领域中存在的语义缺失问题,本论文提出了一种基于注意力机制的卷积循环神经网络模型。该模型使用smote算法进行过采样获得类平衡数据,然后通过词嵌入算法将程序源码节点转换为向量表示作为神经网络的输入,通过带有注意力机智的卷积循环神经网络获取特征信息,最终提取到可迁移的语义相关特征,构建跨项目缺陷预测模型。实验结果表明,本论文提出的基于深度学习的跨项目缺陷预测模型能够在一定程度上缓解跨项目缺陷预测领域的语义缺失问题。
ross-project software defect prediction uses the historical data of one or more source projects to establish the defect prediction model, and then carries on the defect prediction to the target project. At present, there are still some problems in the field of cross-project software defect prediction. Aiming at the problem of semantic absence in the field of cross-project software defect prediction, this paper proposes a convolutional cyclic neural network model based on attention wit. The model using the class balance data obtained through sampling the smote algorithm, and then through word embedding algorithm converts program source node vectors as the input of neural network by convolution with attention wit circulation neural network for feature information, eventually to extract can be semantically related characteristics of migration, build the project defects prediction model. The experimental results show that the cross-project defect prediction model based on deep learning proposed in this paper can alleviate the semantic missing problem in the field of cross-project defect prediction to a certain extent.
金大海、宫云战、黄军富、王雅文
计算技术、计算机技术
计算机应用技术跨项目缺陷预测卷积神经网络注意力机制词嵌入模型,循环神经网络
omputer application technologyCross-project defect predictionConvolutional Neural NetworkAttention mechanismWord embedded model Recurrent neural network
金大海,宫云战,黄军富,王雅文.基于深度学习的跨项目软件缺陷预测[EB/OL].(2021-03-10)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202103-110.点此复制
评论