一种融合深度学习双目深度估计的视觉SLAM系统
Visual SLAM System Enhanced by Deep Learning for Binocular Depth Estimation
当前的视觉SLAM的主要瓶颈是在室外大尺度场景下无法获得准确的深度图像,基于深度学习的单目深度估计方法无法获得尺度信息,并且在细节场景处的处理不够细致。本文提出了一种改进的可以实时推理的双目深度估计网络,并将其加入到视觉SLAM中,实现了一种类似RGB-D的视觉SLAM方法,该方法能够在KITTI数据集上实时运行并且实现了构建稠密的点云地图。本文提出的方法在KITTI数据集与其他主流SLAM方法进行了性能评估和对比,结果显示能够达到相比传统双目视觉SLAM系统更有竞争力的定位性能。
he primary bottleneck in current visual SLAM (Simultaneous Localization and Mapping) systems is the inability to obtain accurate depth images in large-scale outdoor scenarios. Monocular depth estimation methods based on deep learning fail to capture scale information and often lack detail in complex scenes. This paper proposes an improved real-time inferable binocular depth estimation network and integrates it into visual SLAM, effectively creating an RGB-D-like SLAM approach. This method is capable of real-time operation on the KITTI dataset and constructing dense point cloud maps. A performance evaluation and comparison of the proposed method with other mainstream SLAM techniques on the KITTI dataset demonstrate that it achieves competitive localization performance compared to traditional binocular visual SLAM systems.
陈伟光、焦继超
计算技术、计算机技术电子技术应用自动化技术、自动化技术设备
视觉SLAM深度估计三维重建深度学习
Visual SLAMDepth Estimation3D ReconstructionDeep Learning
陈伟光,焦继超.一种融合深度学习双目深度估计的视觉SLAM系统[EB/OL].(2024-03-20)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202403-245.点此复制
评论