|国家预印本平台
首页|Partial sums of the M\"obius function in arithmetic progressions assuming GRH

Partial sums of the M\"obius function in arithmetic progressions assuming GRH

Partial sums of the M\"obius function in arithmetic progressions assuming GRH

来源:Arxiv_logoArxiv
英文摘要

We consider Mertens' function M(x,q,a) in arithmetic progression, Assuming the generalized Riemann hypothesis (GRH), we show an upper bound that is uniform for all moduli which are not too large. For the proof, a former method of K. Soundararajan is extended to L-series.

Benjamin Suger、Karin Halupczok

数学

Benjamin Suger,Karin Halupczok.Partial sums of the M\"obius function in arithmetic progressions assuming GRH[EB/OL].(2011-11-14)[2025-07-16].https://arxiv.org/abs/1111.3305.点此复制

评论