一种具有良好可理解性的基于支持向量机的模糊系统
New Support Vector Machine-based Fuzzy System with High Comprehensibility
本文提出了一种基于支持向量机(SVM)的模糊系统(SVM-FS)。SVM-FS同时具有良好的可理解性和令人满意的推广能力。SVM提供了一种从数据中抽取支持向量,进而产生模糊IF-THEN规则的机制。在SVM-FS中,SVM用于抽取IF-THEN规则;模糊基函数推理系统作为模糊推理系统。而且,我们通过与其他模糊系统做比较,在规则抽取和推理方法两方面对该方法进行理论分析。使用基准数据集,我们做了对比试验。理论分析和试验结果显示该方法具有良好的可理解性和令人满意的推广能力。
his paper proposes a support vector machine (SVM)-based fuzzy system (SVM-FS), which has good comprehensibility as well as satisfactory generalization capability. SVM provides a mechanism to extract support vectors for generating fuzzy IF-THEN rules from training data. In SVM-FS, SVM is used to extract IF-THEN rules; the fuzzy basis function inference system is adopted as the fuzzy inference system. Furthermore, we theoretically analyze the proposed SVM-FS on the rule extraction and the inference method comparing with other fuzzy systems; comparative tests are performed using benchmark data. The analysis and the experimental results show that the new approach possesses high comprehensibility as well as satisfactory generalization capability.
黄细霞、周长久、陈善本
计算技术、计算机技术
模糊系统,支持向量机,建模
fuzzy system support vector machine modeling arc welding
黄细霞,周长久,陈善本.一种具有良好可理解性的基于支持向量机的模糊系统[EB/OL].(2005-12-06)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/200512-101.点此复制
评论