无源多传感器多目标跟踪中的属性数据关联算法研究
Feature Data Association Algorithms In Multiple
无源多传感器多目标跟踪的一个关键问题是测量数据的关联问题。相比有源雷达,无源传感器可以提供目标辐射源的属性特征参数信息,因此可以利用这些信息进行属性关联。介绍了两种有效的属性关联算法:基于统计距离的椭圆门限关联算法和基于支持度并应用了D-S证据理论的关联算法。计算机仿真比较了两种算法的性能和特点,证明了在目标属性特征参数不相近的情况下属性关联有很好的关联效果。
he key issues of multiple targets tracking by multiple passive sensors is the association of feature data. Compared to radar, passive sensors could give the targets’ feature data, which can be used in association. This paper introduces two effective algorithms of feature data association, the ‘elliptical threshold algorithm’ based on statistics distance and the ‘supports threshold algorithm’ based on D_S evidence theory. The two algorithms’ performance and characteristic are find and compared through the computer simulation. The algorithms are proved to be effective, especially when the features of different targets are not similar to each other.
唐毅、李立萍、张花国
雷达电子对抗
无源多传感器属性关联统计距离支持度-S证据理论
Multiple Passive SensorsFeature Data AssociationStatistics DistanceSupportsD-S Evidence Theory
唐毅,李立萍,张花国.无源多传感器多目标跟踪中的属性数据关联算法研究[EB/OL].(2008-11-10)[2025-08-25].http://www.paper.edu.cn/releasepaper/content/200811-246.点此复制
评论