概率约束预测控制的凸优化描述研究
On Convex Formulation of Linear Constrained Model Predictive Control
本文对具有乘型和加型不确定性的随机系统提出了一种保证概率约束的预测控制策略。为表征系统的随机特性,使用多面体序列描述系统状态转移矩阵的概率演化范围。多面体的设计依赖于对状态转移矩阵的随机采样,且能够转化为凸优化问题方便计算。利用多面体序列,线性概率约束被转化为求解高效的线性确定性约束。提出的预测控制算法能够保证概率约束和闭环稳定性。仿真例子验证了上述结果。
his paper develops a model predictive control strategy for stochastic linearsystems with both multiplicative and additive uncertainty. The random natureof the system is characterized by a sequence of polytopes, in which thestate-transition matrix evolves with certain probability. Design of the polytopesrelies on random samples of the transition matrix, and computation of thepolytopes is efficient through a convex optimization. On the basis of thepolytopic description, linear probabilistic constraints can be transformedinto deterministic ones and be solved in low computation burden. The proposed MPCalgorithm ensures probabilistic constraints and closed-loop stability. The resultsare illustrated by a numerical example.
席裕庚、李济炜、李德伟
自动化基础理论计算技术、计算机技术
控制理论与控制工程预测控制概率约束凸优化
ontrol theory and control engineering predictive control probabilistic constraints convex optimization
席裕庚,李济炜,李德伟.概率约束预测控制的凸优化描述研究[EB/OL].(2014-12-09)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201412-220.点此复制
评论