|国家预印本平台
首页|基于小波神经网络模型的预测控制二容水箱

基于小波神经网络模型的预测控制二容水箱

Based on wavelet neural network model predictive control two water tank

中文摘要英文摘要

伴随着经济时代的来临,生产工艺的改良变得越来越迫切,然而工业现场的复杂、多变使得实验的任何微小错误,不仅会造成设备上的损坏,更会在时间上造成浪费,面对这些问题,能否模拟大多数的实际工业对象就成为了关键,四容水箱液位控制系统的出现在很大程度上就解决了这个问题,特别是非线性和耦合特性,使得预测控制在控制非线性系统时也有对象可以钻研,小波神经网络非线性逼近能力的好坏,往往是模型精确与否的紧要环节,因此本文就小波神经网络的参数先期进行优化,在优化的过程中,提出的线性递减因子策略,能使变异量呈现逐渐减小的趋势,起平衡算法的作用,之后将建立确切的模型与动态矩阵控制策略相结合,对多容水箱的非线性进行研究与控制。面对多容水箱耦合特性,利用神经网络解耦技术来应对这个问题,其主要原理是神经网络辨识与前馈解耦理论相结合,对解耦通道、神经网络内部结构、参数作了有关设计,给予了神经网络解耦的具体策略,经过仿真结果表明本文设计的控制策略所取得的控制效果较为不错,且在加入固定干扰源之后检测出的稳定性与鲁棒性也比较好,为解决非线性与耦合性的问题提供了一种可行性。

With coming of the era of economy, improvement of production technology is becoming more and more urgent, however, the scene of the industrial complex and changeable makes experiment for any small mistakes, not only can cause damage to equipment, more can cause waste in time, in the face of these problems, can simulate the most real industrial object is key to the emergence of four water level control system solved the problem to a great extent, especially the nonlinear and coupling characteristics, makes the nonlinear predictive control in the control system also has the object to study, the stand or fall of nonlinear approximation ability of wavelet neural network, is often critical link in model accurately or not, so in this paper, the wavelet neural network to optimize the parameters of the early and in the process of optimization, and put forward the strategy, a linear gradient factor can make the variance decreases trends, balancing algorithm's role, then to establish exact model combined with dynamic matrix control strategy, the more water to study the nonlinear and control. Face more water coupling characteristics, the use of neural network decoupling technology to deal with this problem, the main principle of neural network identification is combined with feedforward decoupling theory, the decoupling channel, neural network structure and parameters for the relevant design, gives the specific strategy of neural network decoupling, through the simulation results show that the control strategy in this paper, design of the control effect is relatively good, and the detected after joining fixed interference sources of stability and robustness is also good, in order to solve the problems of the nonlinear and coupling provided a feasibility.

宋清昆、曹剑坤

自动化技术、自动化技术设备自动化基础理论

小波神经网络模型辨识动态矩阵控制神经网络解耦

wavelet neural network model identification dynamic matrix control neural networks decoupling

宋清昆,曹剑坤.基于小波神经网络模型的预测控制二容水箱[EB/OL].(2016-03-23)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201603-319.点此复制

评论