基于位置社交网络的个性化兴趣点推荐
兴趣点(point-of-interest,POI)推荐是基于位置的社交网络(location-based social networks,LBSN)中一项重要的服务。针对目前推荐算法存在的噪声数据影响推荐质量,用户个性化程度低的问题,提出了一种个性化联合推荐算法。提出了引入POI的位置因素去除不可能或可能性较小的POI,形成初步候选集;综合考虑POI的类别、流行度及用户的社会行为,增加用户个性化的程度,提高推荐结果的质量。在Foursquare真实签到数据集上的实验,证明了提出的联合推荐算法与目前先进的算法相比,准确率提高11%,召回率提高8%。
Point-of-interest (POI) recommendation is an important service in location-based social networks (LBSNs) . For the current recommendation algorithm exists the problems of the noise data affects the recommended quality and low level of user personalization. Motived by this, this paper proposed a personalized joint recommendation algorithm (JRA) . JRA initially utilized the locality of user activity area to early filter the POIs which are impossible or less likely to be a result. For the received preliminary candidate set, then it also considered consider category factor and the popularity factor of POI, and the social behavior of the user to further improve the user experience. The experiments on real Foursquare check-in dataset demonstrate that the JRA compared with the current advanced algorithm, the accuracy rate increased by 11%, recall rate increased by 8%.
牛保宁、韩笑峰、杨茸
计算技术、计算机技术
兴趣点推荐位置信息分类信息流行度信息社会信息位置社交网络
牛保宁,韩笑峰,杨茸.基于位置社交网络的个性化兴趣点推荐[EB/OL].(2018-04-19)[2025-08-16].https://chinaxiv.org/abs/201804.02064.点此复制
评论