|国家预印本平台
首页|基于基因表达式编程的属性融合分类算法

基于基因表达式编程的属性融合分类算法

ttribute-Merge Classification Based on Gene Expression Programming

中文摘要英文摘要

传统符号分类算法(如C4.5)在处理属性间有较大关联的数据集时不容易获得好的分类效果。为了改进传统符号分类算法的不足,本文做了如下探索:(1)提出了属性融合概念和具有属性融合特色的进化适应度函数,在此基础上设计了基于基因表达式编程的属性融合分类算法(GEP Attribute Merge, GAM);(2)提出了保留精英基因的策略(Saving Best_Gene),加快GAM算法的收敛速度;(3))提出了基于“折半”原理的准小属性集寻找算法(Subsmall Attribute Set,SAS);(4)通过比较实验验证了GAM算法的有效性,使得分类精度较传统符号分类算法平均提高了约30%,保留精英基因策略可以加快GAM算法的收敛速度,在同进化代数条件下平均最优适应度提高了约3%,以及SAS算法可以发现准小属性集。

bstract Traditional symbolic classification algorithms, for instance C4.5, can not deal with the relationships among attributes in dataset. For solving the problem, the contributions of this paper include: (1) Proposing a new concept called Attribute Merge, Fitness Function with Attribute Merge and a new algorithm called GEP_based Attribute Merge(GAM) on this new concept; (2) Designing a new method called Saving Best_Gene(SBG) for better convergence; (3) Proposing a new approach called Subsmall Attribute Set(SAS) for finding a sub optimal attribute set; (4) Giving extensive experiments to show that GAM is effective, on the contrary to traditional symbolic classification algorithms the average accuracy can be improved by 30%, and convergence of GAM can be improved by saving the best gene, under the same generation, the average best_fitness can be improved by 3%, and then sub-small attribute set can be discovered by SAS.

赵波、唐常杰、朱明放、魏大刚

计算技术、计算机技术自动化基础理论

基因表达式编程属性融合精英基因准小属性集

GEP Attribute Merge Best Gene Sub-small Attribute Set

赵波,唐常杰,朱明放,魏大刚.基于基因表达式编程的属性融合分类算法[EB/OL].(2005-05-24)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200505-120.点此复制

评论