|国家预印本平台
首页|On the size-Ramsey number of tight paths

On the size-Ramsey number of tight paths

On the size-Ramsey number of tight paths

来源:Arxiv_logoArxiv
英文摘要

For any $r\geq 2$ and $k\geq 3$, the $r$-color size-Ramsey number $\hat R(\mathcal{G},r)$ of a $k$-uniform hypergraph $\mathcal{G}$ is the smallest integer $m$ such that there exists a $k$-uniform hypergraph $\mathcal{H}$ on $m$ edges such that any coloring of the edges of $\mathcal{H}$ with $r$ colors yields a monochromatic copy of $\mathcal{G}$. Let $\mathcal{P}_{n,k-1}^{(k)}$ denote the $k$-uniform tight path on $n$ vertices. Dudek, Fleur, Mubayi and R\H{o}dl showed that the size-Ramsey number of tight paths $\hat R(\mathcal{P}_{n,k-1}^{(k)}, 2) = O(n^{k-1-\alpha} (\log n)^{1+\alpha})$ where $\alpha = \frac{k-2}{\binom{k-1}{2}+1}$. In this paper, we improve their bound by showing that $\hat R(\mathcal{P}_{n,k-1}^{(k)}, r) = O(r^k (n\log n)^{k/2})$ for all $k\geq 3$ and $r\geq 2$.

Linyuan Lu、Zhiyu Wang

数学

Linyuan Lu,Zhiyu Wang.On the size-Ramsey number of tight paths[EB/OL].(2017-12-08)[2025-08-02].https://arxiv.org/abs/1712.03247.点此复制

评论