半线性椭圆型问题大解的二阶估计
Second order expansion for large solutionsof semilinear elliptic problems
在这篇文章中, 我们研究了在光滑区域Ω∈R N(N≥3)上,问题Δu=b(x)f(u),x∈Ω, u(x)=∞ 爆炸解的二阶估计, 其中b(x)是非负的, 并且在边界附近趋于0或者无穷, f在无穷远处以指数ρ>1正规变化, 并且f(u)/u在(0,+∞)单调递增, 我们主要利用的是 Karamata 正规变换理论。
In this paper, we investigate the second term asymptotic behavior of boundary blowup solutions to the problem Δu=b(x)f(u),x∈Ω, subject tothe singular boundary condition u(x)=∞ in smooth bounded domains Ω∈R N(N≥3). Where b(x) is a non-negative weight function, which may be vanishing on the boundary or be singular on the boundary. The absorption term f is regularly varying at infinity with index ρ>1 andthe mapping f(u)/u is increasing on (0,+∞). Our analysis relies on the Karamata regular variation therory.
薛艳星、张志军
数学
半线性椭圆方程爆炸解渐近行为二次展式
semilinear elliptic equationlarge solutionthe asymptotic behaviorthe second-term expansion
薛艳星,张志军.半线性椭圆型问题大解的二阶估计[EB/OL].(2012-02-28)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201202-1076.点此复制
评论