|国家预印本平台
首页|cyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids

cyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids

中文摘要英文摘要

ells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved Caenorhabditis elegans gene acdh-11 (acyl-CoA dehydrogenase [ACDH]) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia. Heat upregulates acdh-11 expression to decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and membrane fluidity via an unprecedented mode of fatty acid signaling.

ells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved Caenorhabditis elegans gene acdh-11 (acyl-CoA dehydrogenase [ACDH]) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia. Heat upregulates acdh-11 expression to decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and membrane fluidity via an unprecedented mode of fatty acid signaling.

Menzel, Ralph、Horvitz, H. Robert、Chen, Sidi、Ma, Dengke K.、Li, Zhijie、Sun, Fang、Lu, Alice Y.、Sun, Fei、Rothe, Michael、Horvitz, H. Robert

10.12074/201605.01243V1

生物化学分子生物学细胞生物学

NEMATODE CAENORHABDITIS-ELEGANS.-ELEGANSORGANISMAL PROTEOSTASISRYSTAL-STRUCTUREEMPERATUREHERMOTAXISMEMBRANESGENETICSHOMEOSTASISESATURASE

Menzel, Ralph,Horvitz, H. Robert,Chen, Sidi,Ma, Dengke K.,Li, Zhijie,Sun, Fang,Lu, Alice Y.,Sun, Fei,Rothe, Michael,Horvitz, H. Robert.cyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids[EB/OL].(2016-05-11)[2025-08-02].https://chinaxiv.org/abs/201605.01243.点此复制

评论