|国家预印本平台
首页|基于用户方面情感的个性化评论推荐

基于用户方面情感的个性化评论推荐

Personalized Review Recommendation based on Users' Aspect Sentiment

中文摘要英文摘要

电商网站上的产品评论对用户的购买决策有着重要的参考价值。由于电商平台上产品的评论数量众多,使得用户短时间内很难找到对他们购物有帮助的评论。之前的个性化评论推荐工作忽略了用户对产品方面级别的偏好以及衡量用户相似度时忽略了用户与产品的交互。另一方面,之前的工作是从整体评论级别而不是从方面级别进行评论帮助性预测。为了解决上述问题,本文提出了一个基于用户方面情感相似度的个性化评论推荐模型,该模型量化评论对于个体购物决策的帮助性并进行个性化的评论推荐。本文首先从产品评论数据中分析用户的方面偏好,同时考虑产品相关性和用户方面情感相似度来改进用户相似度。然后,从方面级别重新定义评论帮助性分数的计算方式。最后,根据评论的帮助性分数给个体推荐帮助性分数靠前的k条评论。为了验证该个性化评论推荐模型的效果,本文提出了两组八个基准模型,并与之进行推荐效果对比。大量的实验分析验证本文提出的模型在覆盖率与精度指标上的效果高于八个基准模型。

Product reviews play an important role in guiding users' purchase decision-making in e-commerce platforms.However, it is challenging for users to find helpful reviews that meet their preferences and experiences among an overwhelming amount of reviews.While some existing personalized review recommendation models neglect an user's aspect preferences or the user-product interactions for measuring user similarity.Moreover, those works predict review helpfulness at the review-level (a review is taken as a whole); few of them consider the aspect-level.To address the above issues, this paper propose an users' aspect sentiment similarity-based personalized review recommendation model ($A2SPR$), which quantifies review helpfulness and recommends reviews that are customized for each individual.Firstly, the paper analyze users' aspect preferences from reviews and improve user similarity with users' fine-grained sentiment similarity and product relevance.Furthermore, the review helpfulness score is redefined at the aspect level, which indicates the review's reference value for users' purchase decisions. Finally, recommending the top $k$ helpful reviews for individuals based on the review helpfulness score. To validate the performance of the proposed model, eight baselines are developed and compared.Experimental results show that our model performs better than those baselines in both the coverage and precision.

王国军、吴杰、黄春利、姜文君

计算技术、计算机技术

推荐系统个性化评论推荐产品相关性方面情感情感分析

recommendation system personalizedreview recommendation product relevance aspect sentiment sentiment analysis

王国军,吴杰,黄春利,姜文君.基于用户方面情感的个性化评论推荐[EB/OL].(2020-04-09)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/202004-84.点此复制

评论