一类分数阶微分方程边值问题正解的存在性和多重性
Existence and multiplicity of positive solutions for a class of fractional boundaryvalue problem
本文研究下列分数阶微分方程$$left{ligned & D^{lpha}_{0+}u(t)+a(t) f(t,u(t))=0 , 0<t<1,\& u(0)=u'(0)=u''(0)=u''(1)=0,endaligned ight.$$其中$3 < lpha leq 4$ 是一实数, $D^{lpha}_{0+}$ 为Riemann-Liouville导数, $f:[0,1] imes[0,+infty) ightarrow [0,+infty)$ 连续, $a(t)inC((0,1),[0,+infty))$ 允许在 $t=0, 1$ 处奇异. 利用不动点指数理论, 得到了方程正解的存在性和多重性. 改进了一些已有的结果. 最后给出一个例子.
he aim of this paper is to consider the following fractionaldifferential equation$$left{ligned & D^{lpha}_{0+}u(t)+a(t) f(t,u(t))=0 , 0<t<1,\& u(0)=u'(0)=u''(0)=u''(1)=0,endaligned ight.$$where $3 < lpha leq 4$ is a real number, $D^{lpha}_{0+}$ isthe standard Riemann-Liouville derivative, $f:[0,1] imes[0,+infty) ightarrow [0,+infty)$ is continuous, $a(t)inC((0,1),[0,+infty))$ may be singular at $t=0,1$. Bymeans of the fixed point index theory, a number of theorems on theexistence and multiplicity of positive solutions are obtained andsome previous results are improved. Finally one example is workedout to demonstrate our main results.
王永庆、刘立山
数学
分数阶微分方程正解格林函数不动点指数
Fractional differential equationPositive solution Green function Fixed point index.
王永庆,刘立山.一类分数阶微分方程边值问题正解的存在性和多重性[EB/OL].(2016-10-20)[2025-07-25].http://www.paper.edu.cn/releasepaper/content/201610-139.点此复制
评论