|国家预印本平台
首页|基于启发式探测的多智能体分层强化学习

基于启发式探测的多智能体分层强化学习

Multi-Agent Hierarchical Reinforcement Learning Based on Heristic Exploration

中文摘要英文摘要

为了解决多智能体分层强化学习初期随机探测效率很低的问题,本文探讨了一种基于启发式探测的多智能体分层强化学习方法,通过采用启发式Boltzmann机加轮盘赌算法选择动作,实现了启发式探测,从而在学习初期便能引导Agent快速收敛,仿真实验结果验证了该方法的可行性和优越性。进一步的实验结果表明,在受限通信条件下启发式探测功能依然能够发挥作用。

In order to deal with the low performance of random exploration in the early epoches of multi-agent hierarchical reinforcement learning, a multi-agent hierarchical reinforcement learning approach based on heristic exploration is discussed. A heuristic exloration is proposed by combining heuristic Boltzmann machine with roulette algorithm for act selection. In a result, the learning agent converges quickly in early epoches. The simulation expremental results show that the proposed approach is adaptable and advantaged. More expremental results show that heuristic exploration still play an important role.

沈晶、刘海波

计算技术、计算机技术自动化技术、自动化技术设备

启发式探测多智能体系统分层强化学习

heuristic exloration multi-agent system hierarchical reinforcement learning

沈晶,刘海波.基于启发式探测的多智能体分层强化学习[EB/OL].(2013-02-02)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201302-29.点此复制

评论