|国家预印本平台
首页|四元数贝塞尔-傅里叶矩及其不变量研究

四元数贝塞尔-傅里叶矩及其不变量研究

Research on Quaternion Bessel-Fourier moments and their invariants

中文摘要英文摘要

图像矩和矩不变量被广泛用于图像分析和模式识别中,主要用来处理灰度图像。已有的处理彩色图像的图像矩方法大多没有考虑色彩的关联,本文结合四元数理论,提出一种以矢量方式处理彩色图像的四元数贝塞尔-傅里叶正交矩,并给出这种矩与单个通道的传统贝塞尔-傅里叶正交矩之间的关系,同时研究了该矩的平移和旋转不变性,构造具有相位信息的不变量。实验结果表明:在图像重建和抗噪性方面,四元数贝塞尔-傅里叶正交矩比四元数Zernike矩具有更好的性能。

Moment functions and moment invariants have been widely used in gray-level image analysis and pattern recognition, but these approaches may loose the existing correlation between color components when applying to color image. A new set of moments named orthogonal Quaternion Bessel-Fourier moments (QBFMs) based on quaternion theory was introduced to deal with color image as a vectorial field, the relationship between the new moments and conventional orthogonal Bessel-Fourier moments for the signal channel was given. The invariance to image translation and rotation was investigated and the invariants including phase information were constructed. Experimental results show that the orthogonal quaternion Bessel-Fourier moments perform better than quaternion Zernike moments (QZMs) in terms of image reconstruction capability and noise robustness.

舒华忠、邵珠宏、伍家松

数学

四元数贝塞尔-傅里叶矩不变量目标识别

quaternionBessel-Fourier momentinvariantobject recognition

舒华忠,邵珠宏,伍家松.四元数贝塞尔-傅里叶矩及其不变量研究[EB/OL].(2012-06-18)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201206-264.点此复制

评论