|国家预印本平台
首页|一种基于深度学习的中文微博情感分析融合模型

一种基于深度学习的中文微博情感分析融合模型

deep learning-based sentiment analysis fusion model for Chinese micro-blog

中文摘要英文摘要

随着网络信息技术的不断发展,文本挖掘与处理工作渐渐交由电脑执行,而情感分析便是这样的一种技术。作为一种自然语言处理方法,情感分析能够有效的分析出文本信息中所包含的主观意愿,在商品满意度调查、微博态度判别等方面都有着广阔的应用。本文首先对前人在这方面的工作做了梳理,并针对传统的深度学习特征提取不充分的问题,提出了一种融合的深度学习模型。该模型首先通过双向长短期记忆网络(Bilstm)提取文本的长距离时序特征,然后以此为输入,利用卷积神经网络(CNN)提取空间特征。进一步,利用一种双层注意力结构提取原文本的时序特征。最后将这两部分提取到的特征进行拼接送入全连接层,然后进行分类。实验结果表明:本文提出的模型相较于单独的传统模型和部分混合模型的准确度与F1值都有所提升,证明了本文所提出模型的有效性。

With the continuous development of network information technology, text mining and processing are gradually being carried out by computers, and sentiment analysis is such a technology. As a natural language processing method, sentiment analysis can effectively analyze the subjective intentions contained in text information, and has a wide range of applications in product satisfaction surveys, Weibo attitude discrimination, etc. This paper firstly sorts out the previous work in this area, and proposes an integrated deep learning model for the problem of insufficient feature extraction in traditional deep learning. The model first extracts long-distance temporal features of text through a bidirectional long short-term memory network (Bilstm), and then use it as input to extract spatial features by using convolutional neural network (CNN).Further, a two-layer attention structure is used to extract the temporal features of the original text. Finally, the features extracted from these two parts are spliced and sent to the fully connected layer, and then classified. The experimental results show that the accuracy and F1 value of the model proposed in this paper are improved compared with the traditional model alone and some hybrid model.It proves the effectiveness of the model proposed in this paper..

张劼、周映宇

计算技术、计算机技术

深度学习文本情感分析卷积神经网络(CNN)双向长短期记忆网络(Bilstm)注意力机制

eep LearningText Sentiment AnalysisConvolutional Neural Networks (CNN)Bidirectional Long Short-Term Memory Networks (Bilstm)Attention Mechanisms

张劼,周映宇.一种基于深度学习的中文微博情感分析融合模型[EB/OL].(2022-03-28)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/202203-428.点此复制

评论