|国家预印本平台
首页|概念性水文模型与神经网络模型的偶和应用研究

概念性水文模型与神经网络模型的偶和应用研究

pplication and research on coupling of conceptual hydrological model and neural network model

中文摘要英文摘要

概念性模型和黑箱子模型各有所长,采用新安江模型的蒸散发产流计算模块进行产流计算,神经网络模型和K最近邻误差修正模型进行汇流计算,构建了耦合模型。该模型产流计算精度高,汇流非线性模拟能力强,实现了不需实测前期流量的连续模拟。模型使用SCE-UA算法与遗传早停止SCG算法相结合的全局优化方法进行参数优选,降低了经验因素的影响。建立集总式、分单元式模型,在东湾流域进行对比,结果表明耦合模型兼具概念性模型和黑箱子模型的优势,模拟精度高于新安江模型,易于使用。

onceptual and black box models have advantages and disadvantages. The coupling model is constituted by evapotranspiration and runoff generation modules of the Xinanjiang model, the neural network flow concentration model and the K-nearest neighbor error correction model. In the coupling model, the runoff generation module has a high accuracy and the flow concentration module has a strong nonlinear simulation ability. The flow concentration module of the coupling model does not adopt the real-time forecasting mode and can simulate the discharge continuously without using observed previous outlet flow. A global optimization algorithm by combining the SCE-UA algorithm and the genetic early stopping SCG algorithm is used to calibrate the model so the influences of experiential factors on calibration are greatly eliminated. Two types(lumped and sub-block) model is applied to Dongwan watershed and the results prove that the coupling model has a higher accuracy than the Xinanjiang model. The coupling model has advantages of conceptual and black-box model and is easy to be used.

姚成、刘志雨、李致家、张昊、阚光远

水利工程基础科学环境科学理论

新安江模型耦合模型K最近邻误差修正神经网络SCE-UA

Xinanjiang modelcoupling modelK-nearest neighbor error correctionneural networkSCE-UA

姚成,刘志雨,李致家,张昊,阚光远.概念性水文模型与神经网络模型的偶和应用研究[EB/OL].(2012-03-08)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201203-274.点此复制

评论