|国家预印本平台
首页|基于Attention-based BiLSTM的可解释性流程规范性监控方法

基于Attention-based BiLSTM的可解释性流程规范性监控方法

Explainable Prescriptive Process Monitoring with Attention-based BiLSTM

中文摘要英文摘要

随着流程信息系统在企业管理中被广泛应用,人们对规范性流程分析技术越来越感兴趣。然而,现有的流程规范性分析方法常常忽视所推荐动作的可解释性,这限制了它们在生产环境中被采纳。为了解决该问题,本文提出了一种基于集成注意力机制的双向LSTM网络和流程转移系统的方法,该方法不仅能够针对流程的关键绩效指标提供优化流程实例的推荐执行动作,而且还给出相关解释。通过对真实数据集的测试,我们提出的方法在流程规范性监控和提供相关解释方面表现出了显著的有效性。

With the widespread adoption of process information systems in corporate management, there is a growing interest in prescriptive process analysis techniques. However, existing prescriptive analysis approaches often overlook the interpretability of recommended actions, limiting their application in production environments. To address this issue, this paper introduces a novel approach based on an attention-based bidirectional LSTM network and a process transition system. This method can not only provide recommended execution actions for optimizing process instances towards the key performance indicators of the process but also provide relevant explanations. Through testing on real-world datasets, our proposed method demonstrates significant efficacy in both prescriptive process monitoring and providing pertinent explanations.

吴步丹、宋云飞

计算技术、计算机技术

流程挖掘可解释性规范性业务流程监控BiLSTM注意力机制

Process MiningInterpretabilityPrescriptive Process MonitoringBiLSTMAttention Mechanism

吴步丹,宋云飞.基于Attention-based BiLSTM的可解释性流程规范性监控方法[EB/OL].(2023-12-19)[2025-08-19].http://www.paper.edu.cn/releasepaper/content/202312-38.点此复制

评论