一种邻域自适应半监督局部Fisher判别分析算法
针对利用局部化思想解决多模数据的判别分析问题时,根据经验对局部邻域大小进行全局统一设定无法体现局部几何结构的差异性的不足,提出一种邻域自适应半监督局部Fisher判别分析(neighborhood adaptive semi-supervised local Fisher discriminant analysis,NA-SELF)算法。该算法在半监督局部Fisher判别分析算法的基础上,结合马氏距离和余弦相似度确定初始近邻数,并根据样本空间概率密度估计调整近邻数。通过人工数据集和5组UCI标准数据集对该算法的特征降维性能进行验证,并与典型的维数约简算法和采用传统近邻方法的判别分析算法进行比较,实验结果表明该算法具备更高的有效性。
For the discriminant analysis of multimodal data, the idea of localization can hardly reflect the difference of local geometric structure according to the global setting of local neighborhood by experience. Aiming at this problem, this paper proposed a neighborhood adaptive semi-supervised local Fisher discriminant analysis (NA-SELF) algorithm. The new algorithm based on the semi-supervised local Fisher discriminant analysis algorithm, obtained the initial neighborhood by combining the Mahalanobis distance and cosine similarity, and adjusted the number of neighbors according to the probability density estimation of sample space. The performance of feature dimensionality reduction using the algorithm was verified by the synthetic datasets and five UCI standard datasets. Compared with several typical dimensionality reduction algorithms and the discriminant analysis algorithm using the traditional k-nearest neighbor method, the experimental results show that the proposed algorithm has higher effectiveness.
房立清、齐子元、杜伟
计算技术、计算机技术自动化基础理论
局部邻域自适应半监督局部Fisher判别分析维数约简
房立清,齐子元,杜伟.一种邻域自适应半监督局部Fisher判别分析算法[EB/OL].(2018-05-20)[2025-08-16].https://chinaxiv.org/abs/201805.00212.点此复制
评论