|国家预印本平台
首页|Spark环境下K-means初始中心点优化研究综述

Spark环境下K-means初始中心点优化研究综述

中文摘要英文摘要

为了能够及时了解Spark环境下经典聚类算法K-means的最新研究进展,把握K-means算法当前的研究热点和方向,针对K-means算法的初始中心点优化研究进行综述。首先介绍了内存计算框架Spark和K-means算法,并分析了K-means算法聚类不稳定性的成因和影响,其目的在于指出优化K-means算法的重要性。详细介绍了目前在Spark环境下优化K-means初始中心点的主要方法和最新研究现状,并展望了K-means初始中心点优化问题的未来研究方向。

In order to understand the latest research progress of the classical clustering algorithm K-means in Spark environment, and grasp the current research hotspots and directions of K-means algorithm, this paper reviews the initial center point optimization research on K-means algorithm. Firstly, it introduces the memory computing framework Spark and K-means algorithms, and analyzes the cause and effects of clustering instability of K-means algorithm, which aimed to point out the importance of optimizing K-means algorithm. And it introduces the main methods and the latest research status of optimizing the initial center point of K-means in Spark environment in detail, and also discusses the future research trends in initial center point optimization of K-means.

赵京霞、南方哲、钱育蓉、行艳妮

10.12074/201901.00067V1

计算技术、计算机技术

K均值算法分布式内存计算框架算法优化聚类算法

赵京霞,南方哲,钱育蓉,行艳妮.Spark环境下K-means初始中心点优化研究综述[EB/OL].(2019-01-03)[2025-08-18].https://chinaxiv.org/abs/201901.00067.点此复制

评论