|国家预印本平台
首页|基于用户交互加权的最小程度描述原则的数据钻取的优化

基于用户交互加权的最小程度描述原则的数据钻取的优化

Optimizing data drilling with the user interaction weighted minimum description length principle

中文摘要英文摘要

交互式探索是大规模层次数据可视化视图的一种有效的数据获取方式。现有的探索技术(比如在二维平面上的平移和缩放等)提供的上下文信息有限,或是提供过多的失真图形。为了解决这种问题,本文提出了一种根据用户的焦点进行非平衡加权,并利用最小描述长度原则(MDL)进行节点聚合的交互探索方式。这种方式可以自由地对焦点区域以较好的聚合程度进行展开,既可以提供必要的数据信息,也可以减少数据集过大带来的视觉混乱。这样就可以在大规模数据集中进行高效的数据挖掘。此外,本文中的交互方式与现在已有的交互方式(比如,缩放,旋转等)不冲突,可以根据不同的情景有选择地进行融合,达到更好的效果。

Interaction exploration is an effective way to obtain potential information from the treemap that visualized large-scale data. Data exploration techniques that has been proposed (such as translation and scaling on a two-dimensional plane) provide limited context information only or provide excessive distortion. Query was proposed to get interested view, but it need clear destination. The method that get a detailed view according to scores evaluated by user interaction can\'t get a suitable initial view. To this, we propose an interactive exploration method that performs unbalanced weighting according to the user's focus and uses the minimum description length principle (MDL) for node aggregation. This method can freely expand the focus area in a good degree of aggregation, which can provide the necessary data information and reduce the visual confusion caused by the excessive data set. This enables efficient data mining in large-scale datasets. We further verify the availability of method by experiment. In addition, the interaction mode in this paper has no conflict with the existing interaction modes (such as zooming, rotating, etc.), and the better results can be achieved by selectively combining according to different scenarios.

李炜、徐童、沈奇威、陶芳

计算技术、计算机技术

数据可视化数据钻取节点聚合UMDL

data visualizationdata drillingnode aggregationUMDL

李炜,徐童,沈奇威,陶芳.基于用户交互加权的最小程度描述原则的数据钻取的优化[EB/OL].(2018-12-20)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201812-80.点此复制

评论