流计算模式下概率粗糙集三支决策的快速计算
在流计算模式下进行三支决策的快速计算研究是一项具有挑战性的新议题。针对流计算模式中的动态对象增量与减量同步发生的现象,提出了一种概率粗糙集三支决策的快速流计算方法。首先讨论了流计算模式中决策信息系统的单对象增减更新模式的数据模式,然后基于流计算数据变化模式分别提出了数据增量与数据减量时三支决策域的变化推理,最后基于上述理论给出了一种流计算模式下的三支决策动态增减快速学习算法。通过八种UCI数据集的对比实验,证明了该算法不但在时间消耗上明显优于经典三支决策算法,而且对于三支决策阈值具有较强的稳定性。
It is a challenging topic to carry out fast computing for three-way decision in stream computing mode. Aim at the phenomenon that the increment and decrement of dynamic objects occur synchronously in the stream computing mode, this paper proposed a fast stream computing method for probabilistic rough set three-way decision. Firstly, ytdiscussed the data mode of single-object increment and decrement updating mode in stream computing. Then, proposed the reasoning of the three-way decision domains in data increment and data decrement dynamic mode respectively based on the pattern of data variation. Finally, proposed a three-way decision dynamic incremental and decremental learning algorithm based on the above theory. The comparison experiments of eight UCI datasets show that the algorithm not only outperforms the classical three-decision algorithm in time consumption, but also has strong stability for the three-way decision thresholds.
王喜秋、刘斓、汤涛、徐健锋
计算技术、计算机技术自动化基础理论
三支决策流计算模式动态学习概率粗糙集
王喜秋,刘斓,汤涛,徐健锋.流计算模式下概率粗糙集三支决策的快速计算[EB/OL].(2018-04-17)[2025-08-02].https://chinaxiv.org/abs/201804.02178.点此复制
评论