基于贝叶斯理论的TOPMODEL参数不确定性分析
Bayesian Theory for Parameter Uncertainty Analysis in TOPMODEL
应用贝叶斯理论探讨了TOPMODEL模型参数不确定性问题。首先通过Monte Carlo途径确定了模型中的敏感参数,结果表明,模型中的参数SZM、RV较为敏感,它们的微小改变都将影响模拟结果;其次用Markov chain Monte Carlo(MCMC)算法得到其后验分布的抽样,进而获得流域出口断面流量过程的抽样分布,并据此对模型参数的不确定性及其对预报结果的影响进行评价。提供了参数不确定性分析的流程,并通过模型预报结果的抽样分布,构造了90%的置信预报区间。
Bayesian theory is applied to the parameter uncertainty analysis of TOPMODEL in this paper. The sensitive parameters of TOPMODEL are determined firstly by the Monte Carlo Method. The results show that the parameters SZM and RV are sensitive, any a slight change of them will influence the simulated results; Moreover, the sampling distribution of flow process at the basin outlet can be obtained by the later distribution sampling, which can be calculated with the algorithm of Markov chain Monte Carlo (MCMC). And the paper analyzes the parameter uncertainty and its influence on forecast based on MCMC method. The paper also provides the analysis process of the parameter uncertainty, and constructs the 90% confidence interval with the sampling distribution of the model forecast results.
刘金涛、李彬权、华家鹏、余钟波、梁忠民
水利工程基础科学
贝叶斯理论MCMC不确定性分析参数敏感性分析OPMODEL置信区间
Bayesian theoryMCMCuncertainty analysisparameter sensitive analysisTOPMODELconfidence interval
刘金涛,李彬权,华家鹏,余钟波,梁忠民.基于贝叶斯理论的TOPMODEL参数不确定性分析[EB/OL].(2008-03-27)[2025-07-23].http://www.paper.edu.cn/releasepaper/content/200803-846.点此复制
评论