基于Gibbs抽样的贝叶斯随机波动模型分析
Bayesian Analysis of Stochastic Volatility Model Using Gibbs Sampling
随机波动性是经济金融时间序列中的一个普遍现象,它在金融风险管理研究中具有重要地位。通过分析随机波动模型的统计结构,推断了SV模型似然函数的具体形式,据此构造了模型参数的共轭先验分布;利用贝叶斯定理获得了相应的模型参数后验条件分布;同时,为了获得模型参数的贝叶斯估计及其置信区间,设计了基于Gibbs抽样的MCMC数值计算程序,并利用上海综合指数和深圳成份指数数据进行了建模实证分析。研究结果表明:贝叶斯方法是研究金融时间序列波动性问题的有效工具。
Stochastic volatility is a widespread phenomenon in the data of economic and time series and plays an important role in the study about the financial risk management. In this paper, we first explore the statistical structure of the stochastic volatility model and inference its likelihood function’s concrete form, by which we construct its parameters’ conjugate priors. Then, in terms of the Bayesian theorem, we deduct their conditional posterior distributions. In order to obtain the parameters’ Bayesian estimation value and their intervals, we design an Markov chain Monte Carlo algorithm procedure with Gibbs sampler. Finally, using the Shanghai stock’s comprehensive index and the Shenzhen stock’s composition index, we give an empirical example to illustrate how to use the method surveyed. The results show that the Bayesian method is a valid tool for studying financial time sequence.
朱慧明、赵锐、郝立亚
财政、金融
随机波动模型,贝叶斯分析,Gibbs抽样,MCMC模拟
stochastic volatility modelBayesian analysisGibbs samplingMCMC simulation
朱慧明,赵锐,郝立亚.基于Gibbs抽样的贝叶斯随机波动模型分析[EB/OL].(2007-01-04)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/200701-41.点此复制
评论