|国家预印本平台
首页|基于困难类别感知数据增强的鲁棒性跨域语义分割研究

基于困难类别感知数据增强的鲁棒性跨域语义分割研究

Research on hard-aware augmentation based robust semantic segmentation

中文摘要英文摘要

在深度学习领域,如何缓解不同场景之间的差异给模型性能带来的影响,已经成为一项具有挑战性的研究,无监督域自适应语义分割是其中的一项经典任务。目前,基于自训练的无监督域自适应方法已经取得了不错的效果,然而困难类别的存在使得模型难以为其获得较好的性能,目标域伪标签中错误数据的存在也进一步阻碍了跨域分割的优化。针对上述问题,本文分别提出了跨图像的困难类别感知数据增强算法和基于Mean-Teacher的一致性约束算法,来优化伪标签中困难类别的数据占比,并整体上提升跨域分割模型的鲁棒性。本文在无监督域自适应语义分割的基准任务GTA5-to-Cityscapes和SYNTHIA-to-Cityscapes上进行实验,客观指标和可视化结果均证明了本文所提出方法的有效性。

In the field of deep learning, it has become a challenging research to mitigate the impact of differences between different scenarios on model performance, and unsupervised domain adaptationon semantic segmentation is one of the classical tasks. Currently, unsupervised domain adaptation methods based on self-training have achieved good results, however, the existence of hard categories makes it difficult to obtain better performance, and the incorrect pseudo-labelin the target domain further hinders the optimization of cross-domain segmentation. To address the above problems, this paper proposes a cross-image hard-awareaugmentation and a Mean-Teacherbased consistency constraint, respectively, to enhance the proportion of hard category in the pseudo-label and improve the robustness of the cross-domain segmentation model. Experiments are conducted on GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes and both objective metrics and visualization results demonstrate the effectiveness of the proposed methods in this paper.

祝闯、唐文琦

计算技术、计算机技术

人工智能无监督域自适应语义分割困难类别感知数据增强鲁棒性计算机视觉

artificial intelligenceunsupervised domain adaptationsemantic segmentationhard-aware augmentationrobustnesscomputer vision

祝闯,唐文琦.基于困难类别感知数据增强的鲁棒性跨域语义分割研究[EB/OL].(2023-02-14)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202302-76.点此复制

评论