基于拓扑度理论的一类双参数奇异微分方程组的分歧分析
Bifurcation analysis for a singulardifferential system with two parametersvia to topological degree theory
基于~Leray-Schauder 拓扑度理论与上下解方法,本文研究一类双参数奇异微分方程组的分歧分析,利用辅助方程组的解的性质和拓扑度理论,本文得到相应参数的明确的分歧点。
Based on the relation between Leray-Schauder degree and a pair of strictlower and upper solutions, we focus on the bifurcation analysis for a singulardifferential system with two parameters, explicit bifurcation points for relativeparameters are obtained by using the property of solution for the akinsystems and topological degree theory.
孙奉龙、吴永洪、刘立山、张新光
数学
Leray-Schauder~度分歧分析奇异微分方程组双参数严格上下解.
Leray-Schauder degreeBifurcation analysisSingular differentialsystemTwo parametersStrict lower and upper solutions.
孙奉龙,吴永洪,刘立山,张新光.基于拓扑度理论的一类双参数奇异微分方程组的分歧分析[EB/OL].(2016-05-18)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201605-565.点此复制
评论