|国家预印本平台
首页|基于CPU-GPU融合架构下的MapReduce编程模型

基于CPU-GPU融合架构下的MapReduce编程模型

MapReduce Processing Model Based on Fusion CPU-GPU Architecture

中文摘要英文摘要

在数据量不断增加的今天,大数据的分析和挖掘给传统计算的架构和方法带来了挑战。随着多核和并行计算技术的不断发展,人们开始关注GPU在通用计算领域的应用,以GPU作为协处理的加速架构不断的提出。近年,一种融合GPU和CPU的异构架构由于其低功耗和高性能计算能力得到了市场的广泛关注。在异构体系上的并行编程一直以来由于GPU内部架构的复杂性而受到了限制。分布式领域中一种抽象编程模型--MapReduce,在数据挖掘和大数据计算分析中提供了编程用户简易的接口。本文关注于新的CPU-GPU异构下使用Mapreduce编程模型简化对CPU-GPU的并行开发,为了更好让Mapreduce编程模型适应GPU特性,设计了一种多hash表的无锁机制管理中间键值对,在融合架构下使用了动态的任务调度方法,充分的利用CPU-GPU的计算周期。利用4种不同的负载测得执行时间,分别与Mars和MapCG进行比较,时间的加速比分别可以达到1.4-3.6和1.3-26倍。

ata analysis and mining bring big challenges to traditional architecture of compute with increse of amount of data. With the continuous development of multi-core and parallel computing technology, people begin to pay close attention to GPU in the field of general-purpose computing, and many researches about GPU as co-processer to accelerate compute are put forward. In recent years, a fusion of GPU and CPU heterogeneous architecture obtained the widespread attention of the market because of its low power consumption and high performance computing ability . The parallel programming on a heterogeneous system has been confined by the complexity of the internal architecture of GPU. A distributed programming model - Mapreduce, provides a simple programming interface for programmer in big data computing and analysis. To simplify complexity of parallel programming on heterogeneous,we focus on using Mapreduce programming model on the new fusion CPU-GPU architecture in this paper. In order to make Mapreduce programming model adapt to the GPU features, we designed hash tables to manage intermediate key/value pairs without locking mechanism, and implemented a dynamic task scheduling method to fully utilize system computing period . We evaluated excuting time under four different workloads. The speedup compared with Mars and MapCG respectively outperform 1.4 to 3.6 and 1.3 to 26 times.

贺再红、陈旭、罗勇、谭怀亮

计算技术、计算机技术

融合CPU-GPUMapReduce任务调度

Fusion CPU-GPUMapreducedynamic scheduling

贺再红,陈旭,罗勇,谭怀亮.基于CPU-GPU融合架构下的MapReduce编程模型[EB/OL].(2016-04-15)[2025-06-28].http://www.paper.edu.cn/releasepaper/content/201604-182.点此复制

评论