|国家预印本平台
首页|Out-of-bag样本的应用研究

Out-of-bag样本的应用研究

Research of the Applications of Out-of-bag Sample

中文摘要英文摘要

Bagging集成通过组合不稳定的基分类器在很大程度上降低"弱"学习算法的分类误差, Out-of-bag样本是Bagging集成的自然产物。目前, Out-of-bag样本在估计Bagging集成的泛化误差、构建相关集成分类器等方面得到了广泛应用。文章对Out-of-bag样本的应用进行了综述, 阐述了对其进行研究的主要内容和特点, 并对它在将来可能的研究方向进行了讨论。

Bagging can improve the classification error of a weak learning algorithm to a large extent through combining some instable base classifiers. Out-of-bag samples are naturally generated in the process of bagging. At present, out-of-bag samples haven been applied to many fields in ensemble learning, such as estimating the generalization error of a bagging ensemble, constructing ensemble classifiers and so on. This paper gives an overview of the applications of out-of-bag samples whose contents and main characteristics are illustrated. Meanwhile, the future research directions of out-of-bag samples are discussed.

张春霞、郭高

计算技术、计算机技术

BaggingOut-of-bag样本交叉确认法泛化误差ouble-Bagging随机森林

BaggingOut-of-bag sampleCross-validation methodGeneralization errorDouble-baggingRandom forest.

张春霞,郭高.Out-of-bag样本的应用研究[EB/OL].(2011-04-01)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201104-27.点此复制

评论