|国家预印本平台
首页|基于Curvelet和Wavelet相结合的SAR图像抑噪方法研究

基于Curvelet和Wavelet相结合的SAR图像抑噪方法研究

SAR Image Despeckling by Combining Wavelets and Curvelets

中文摘要英文摘要

小波分析具有良好的时频局部化特性,能很好反映信号的零维奇异性,对于图像的非边缘区域具有良好的抑噪能力,但难以表达更高维的特征。Curvelet变换作为一种具有各向异性特征的多尺度变换理论,克服了小波变换难以表达图像边缘的方向特性等内在缺陷,因此对于图像的边缘部分表现出了其特有的抑噪优势。本文结合了这两种方法的优缺点,提出了基于这两种方法相结合的改进的SAR图像抑噪方法,实验结果表明本文提出的方法继承了Curvelet变换和小波变换各自的优势,抑噪效果取得了明显的提高,同时具有较快的处理速度。?

Wavelet transform has the good characteristic of time-frequency locality and many researchs show that it can perform well for denoising in smooth and non-edge areas. But it is not suitable for describing the edges, which have high dimensional singularities. And curvelet is one of new multiscale transform theories, which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing directions of edges in image. So it has superiority in some image analysis, such as image denoising. This paper proposes an improved method for SAR image despeckling, which combined curvelet transform and wavelet transform. The experiment indicates that this combined method has better performance.

胡杰、李映

雷达

计算机应用技术快速curvelet变换平稳小波变换SAR图像相干斑噪声

omputer Application TechnologyFast discrete curvelet transformstationary wavelet transformSAR imagespeckle noise

胡杰,李映.基于Curvelet和Wavelet相结合的SAR图像抑噪方法研究[EB/OL].(2011-01-04)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201101-129.点此复制

评论