|国家预印本平台
首页|基于多层感知机的图像分类

基于多层感知机的图像分类

Image classification based on multilayer perceptrons

中文摘要英文摘要

多层感知机(MLP)是一种前馈神经网络,通过在网络中加入一个或者更多个隐藏层,克服了线性模型的限制,打开了深度学习的大门。本文利用了多层感知机完成图像分类,在Fashion MNIST数据集上进行了探索,并尝试迁移到MNIST数据集中。在Fashion MNIST上我们进行特征预处理后,选择了不同的优化方法并进行比较,此外分别通过增加丢弃法和权重衰减法等正则化方法,实现了对多层感知机的优化、改进。通过实验表明,适当的特征处理能够提高模型的数值稳定性。动量法显著提高了模型效果,同时权重衰减等方法对提高模型的泛化效果起到了帮助。

Multilayer perceptron (MLP) is a feedforward neural network that overcomes the limitations of linear models and opens the door to deep learning by adding one or more hidden layers to the network. In this paper, multilayer perceptrons are used to classfy image, which is explored on the Fashion MNIST dataset, and is attempted to be migrated to the MNIST dataset. In Fashion MNIST, we selected different optimization methods and compared them after feature preprocessing, optimized and improved the multi-layer perceptron by adding regularization methods such as dropout and weight decay.<br /><br />Experiments show that appropriate feature processing can improve the numerical stability of the model. The momentum method significantly improves the effect of the model, weight decay and other regularization methods help to improve the generalization effect of the model.

10.12074/202401.00080V1

计算技术、计算机技术

多层感知机深度学习前馈神经网络

multilayer perceptronsdeep learningfeedforward neural networks

.基于多层感知机的图像分类[EB/OL].(2024-01-07)[2025-08-02].https://chinaxiv.org/abs/202401.00080.点此复制

评论