|国家预印本平台
首页|基于优化PSO-LSSVM的NLOS识别方法研究

基于优化PSO-LSSVM的NLOS识别方法研究

Research on NLOS recognition method based on optimized PSO-LSSVM

中文摘要英文摘要

为了解决室内定位中由于非视距(Non Line of Sight,NLOS)的原因造成的定位精度急剧下降的问题,本文提出了一种优化PSO-LSSVM的识别策略,将非视距传播和视距(Line of Sight,LOS)传播识别问题转化成二分类问题。该方法利用优化后的粒子群算法对最小二乘支持向量机两个参数进行了优化,对提高定位结果的精确度和定位算法的鲁棒性具有一定的意义。实验表明,该算法提升了NLOS/LOS分类的准确性,其性能优于传统的PSO-LSSVM算法,具有一定的可靠性。

In order to solve the problem of sharp drop in positioning accuracy caused by Non Line of Sight (NLOS) in indoor positioning, this paper proposes a recognition strategy to optimize the PSO-LSSVM, which combines the non-line-of-sight propagation and the line-of-sight ( LOS) propagation identification problem is transformed into a binary classification problem. The method uses the optimized particle swarm algorithm to optimize the two parameters of the least squares support vector machine, which has a certain significance to improve the accuracy of the positioning result and the robustness of the positioning algorithm. Experiments show that the algorithm improves the accuracy of NLOS/LOS classification, its performance is higher than the traditional PSO-LSSVM algorithm, and it has certain reliability.

邓中亮、张立凯

通信无线通信

室内定位非视距优化粒子群最小二乘支持向量机分类策略

Indoor positoningNLOSOptimized PSOLSSVMlassification strategy

邓中亮,张立凯.基于优化PSO-LSSVM的NLOS识别方法研究[EB/OL].(2022-03-23)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/202203-351.点此复制

评论