Residually finite lattices in $\widetilde{\mathrm{PU}(2,1)}$ and fundamental groups of smooth projective surfaces
Residually finite lattices in $\widetilde{\mathrm{PU}(2,1)}$ and fundamental groups of smooth projective surfaces
This paper studies residual finiteness of lattices in the universal cover of $\mathrm{PU}(2,1)$ and applications to the existence of smooth projective varieties with fundamental group a cocompact lattice in $\mathrm{PU}(2,1)$ or a finite covering of it. First, we prove that certain lattices in the universal cover of $\mathrm{PU}(2,1)$ are residually finite. To our knowledge, these are the first such examples. We then use residually finite central extensions of torsion-free lattices in $\mathrm{PU}(2,1)$ to construct smooth projective surfaces that are not birationally equivalent to a smooth compact ball quotient but whose fundamental group is a torsion-free cocompact lattice in $\mathrm{PU}(2,1)$.
Domingo Toledo、Matthew Stover
数学
Domingo Toledo,Matthew Stover.Residually finite lattices in $\widetilde{\mathrm{PU}(2,1)}$ and fundamental groups of smooth projective surfaces[EB/OL].(2021-05-26)[2025-08-10].https://arxiv.org/abs/2105.12772.点此复制
评论