基于RNN的航空监视信息融合技术
viation Surveillance Information Fusion Technology Based on RNN
航空监视信息的融合在航空监视处理的过程中十分重要,航空监视信息融合的主要目的是将多来源的监视信息利用各种算法融合出更精确的飞行目标位置信息。传统的基于卡尔曼滤波的航空监视信息融合技术具有机动状态下融合精度低、构造融合模型需要反复人工调参等缺点。因此本文提出了基于递归神经网络(简称RNN)的航空监视信息融合技术,利用在同一时刻的多源监视信息融合得出飞行目标得位置信息。由于各监视源的监视信息其时间戳以及所处坐标系不一致,所以在融合前,需要将不同来源的监视信息进行时空对准。本文通过坐标系转换进行空间对准,使用最小二乘法拟合各维度信息与时间的函数,利用该函数进行各监视源的监视信息预测,从而达到时间对准的目的。经实验验证可知:时空对准过程监视信息精度损失较小,基于RNN的航空监视信息融合算法的融合结果误差比各监视源的平均误差更小。
he integration of aviation surveillance information is very important in the process of aviation surveillance processing. The main purpose of aviation surveillance information fusion is to use multi-source surveillance information to integrate more accurate flight target location information using various algorithms. The traditional Kalman filter-based aeronautical surveillance information fusion technology has the disadvantages of low fusion precision in the maneuvering state and repeated manual adjustment of the structural fusion model. Therefore, this paper proposes an aerial surveillance information fusion technology based on recurrent neural network (RNN), which uses the multi-source monitoring information fusion at the same time to obtain the location information of the flight target. Since the monitoring information of each monitoring source has its time stamp and the coordinate system in which it is located, it is necessary to align the monitoring information of different sources before and after the fusion. In this paper, the coordinate alignment is used for spatial alignment, and the least squares method is used to fit the function of each dimension information and time. The function is used to predict the monitoring information of each monitoring source, so as to achieve the purpose of time alignment. It is proved by experiments that the precision loss of monitoring information in space-time alignment process is small, and the fusion result error of RNN-based aeronautical surveillance information fusion algorithm is smaller than the average error of each monitoring source.
高占春、宋安宇
航空雷达
航空监视信息融合RNN时空对准
viation Surveillance Information FusionRNNSpace-time Alignment
高占春,宋安宇.基于RNN的航空监视信息融合技术[EB/OL].(2019-05-21)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201905-208.点此复制
评论