基于多特征的JavaScript恶意代码检测方案
JavaScript malware detection scheme based on multiple features
近年来,使用JavaScript编写的恶意代码数量层出不穷,高速发展的前端技术更带来了基于新型技术的恶意脚本攻击手段。所以如何准确的识别各类JavaScript恶意代码对保证用户安全显得尤为重要。本文对基于机器学习的JavaScript恶意脚本检测方案进行了研究,改进了基于机器学习的JavaScript恶意脚本检测方案,从JavaScript代码特征、与HTML的交叉特征以及新型HTML5恶意特征几方面进行了多特征提取,并通过对比不同的分类算法构建分类模型,最后通过实验验证了该检测方案对JavaScript脚本及包含恶意脚本的HTML页面均可以进行高效准确的检测。
In recent years, the number of malicious code written in JavaScript has emerged in an endless stream, and the high-speed development of front-end technology has brought about malicious script attacks based on new technologies. Therefore, how to accurately identify various types of JavaScript malicious code is particularly important to ensure user security. This paper studies the JavaScript malicious script detection scheme based on machine learning, and improves the JavaScript malicious script detection scheme based on machine learning. It extracts multiple features from JavaScript code features, cross-features of HTML and new HTML5 malicious features. The classification model is constructed by comparing different classification algorithms. Finally, it is verified by experiments that the detection scheme can effectively and accurately detect JavaScript scripts and HTML pages containing malicious scripts.
崔栋、金正平、李敬涛、张华、温巧燕
计算技术、计算机技术
Web安全JavaScript代码检测机器学习
Web securityJavaScriptCode detectionMachine Learning
崔栋,金正平,李敬涛,张华,温巧燕.基于多特征的JavaScript恶意代码检测方案[EB/OL].(2019-01-10)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201901-61.点此复制
评论