具有可乘白噪声的随机Zakharov格点动力系统的随机吸引子
Random Attractor for Stochastic Zakharov LatticeDynamical Systems with Multiplicative White Noises
本文旨在考虑具有可乘白噪声的随机Zakharov格点动力系统的渐近行为。首先,通过 Ornstein-Uhlenbeck 变换将随机 Zakharov 格点系统化为随机变量作为系数的随机微分方程,验证其解的存在唯一性,从而确定一个连续随机动力系统,具有随机吸收集,并且在这个随机吸收集上是随机渐近紧的。最后指出了该系统存在随机吸引子,该随机吸引子吸引所有的缓增随机集。
he paper is devoted to the long term asymptoticbehavior of solutions to the stochastic Zakharov lattice equationswith multiplicative white noise. Firstly, using Ornstein-Uhlenbeck transformation, the stochastic Zakharov lattice system is turned into a random differential equation with random coefficients, testify theexistence and uniqueness of solutions, therefore the solution of the system determine a continuous random dynamical system withtempered random absorbing set, in which the random dynamical system is asymptotically compactness, then obtain random attractor and absorbing all tempered random sets.
周盛凡、白玉
数学物理学
随机吸引子可乘白噪声随机Zakharov格点系统
Random attractormultiplicative white noisestochastic Zakharov lattice system
周盛凡,白玉.具有可乘白噪声的随机Zakharov格点动力系统的随机吸引子[EB/OL].(2012-01-12)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/201201-403.点此复制
评论