基于注意力机制的混合神经网络模型的文本分类
ext Categorization Using Hybrid Neural Network Model Based on Attention Mechanism
文本分类是自然语言处理(NLP)中的重要任务之一。在文本分类中,句子建模是至关重要的。在已存在的工作中,卷积神经网络(CNN)能有效捕捉空间的局部相关性,循环神经网络(RNN)的变体双向长短期记忆神经网络模型(BiLSTM)能够从历史信息和未来信息中学习长期依赖性。针对它们的不同建模能力优势,本文提出了一种基于注意机制的混合神经网络模型。该模型首先基于BiLSTM引入一个贡献率来调整历史信息和未来信息的不同影响,并应用注意力机制将CNN与BiLSTM结合起来,运用注意力权重突出关键信息来缓解文本信息的丢失。实验结果表明,引入注意机制和贡献率可以有效提高文本分类的性能。
ext categorization is one of important tasks in natural language processing(NLP). In text categorization, sentence modeling is critical. In exsisting schemes, local correlation of spatial can be effectively captured by convolutional neural network (CNN), and long-term dependencies, historical information and follwing information can obtained by BiLSTM a variant of recurrent neural network (RNN). For their different modeling capabilities, this paper proposes a hybrid neural network model based on the attention mechanism. It first introduces a contribution rate based on BiLSTM to adjust the different influences on historical information and following information and applies the attention mechanism to combine CNN with BiLSTM to figure out the weight of key information for the relief of the loss of text information. The experimental results show that the introduction of attention mechanism and the contribution rate can effectively improve the accuracy of text categorization.
秦丽萍、杨金民
计算技术、计算机技术
文本分类卷积神经网络循环神经网络长短记忆神经网络模型双向长短记忆神经网络模型注意力机制贡献率
ext categorizationConvolutional Neural NetworkRecurrent Neural NetworkLong Short-Term MemoryBidirectional LSTMAttention mechanismContribution rate
秦丽萍,杨金民.基于注意力机制的混合神经网络模型的文本分类[EB/OL].(2019-04-22)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201904-257.点此复制
评论