Estimating parameters of a stochastic cell invasion model with fluorescent cell cycle labelling using Approximate Bayesian Computation
Estimating parameters of a stochastic cell invasion model with fluorescent cell cycle labelling using Approximate Bayesian Computation
Abstract We develop a parameter estimation method based on approximate Bayesian computation (ABC) for a stochastic cell invasion model using fluorescent cell cycle labeling with proliferation, migration, and crowding effects. Previously, inference has been performed on a deterministic version of the model fitted to cell density data, and not all the parameters were identifiable. Considering the stochastic model allows us to harness more features of experimental data, including cell trajectories and cell count data, which we show overcomes the parameter identifiability problem. We demonstrate that, whilst difficult to collect, cell trajectory data can provide more information about the parameters of the cell invasion model. To handle the intractability of the likelihood function of the stochastic model, we use an efficient ABC algorithm based on sequential Monte Carlo. Rcpp and MATLAB implementations of the simulation model and ABC algorithm used in this study are available at https://github.com/michaelcarr-stats/FUCCI.
Carr Michael J、Simpson Matthew J、Drovandi Christopher
Queensland University of TechnologyQueensland University of TechnologyQueensland University of Technology
生物科学研究方法、生物科学研究技术细胞生物学
Sequential Monte CarloSMC-ABCCell proliferationCell motilityRandom walk model
Carr Michael J,Simpson Matthew J,Drovandi Christopher.Estimating parameters of a stochastic cell invasion model with fluorescent cell cycle labelling using Approximate Bayesian Computation[EB/OL].(2025-03-28)[2025-06-29].https://www.biorxiv.org/content/10.1101/2021.04.20.440712.点此复制
评论