二目标空间中的一种并行分解型多目标进化算法
parallel multi-objective evolutionary algorithm based on decomposition in bi-objective spaces
分解型多目标进化算法(MOEA/D)借用了传统的数学分解方法。MOEA/D在解决多目标优化问题(MOPs)时取得了较好的实验结果,但是当解决的问题规模很大时,MOEA/D却要花费大量的计算时间。本文提出了用于二目标优化的一种基于MPI与OpenMP的并行MOEA/D(pMOEA/D)方案。该方案将子种群分配到不同的节点上,由MPI解决节点间的进程级并行,OpenMP负责每个节点内的线程级并行。在4个节点集群上的实验结果表明,pMOEA/D取得了较好的加速比效果。
he multiobjective evolutionary algorithm based on decomposition (MOEA/D) borrows the decomposition idea from traditional mathematical programming methods. MOEA/D has shown remarkable performances when solving most multiobjective optimization problems (MOPs). However, MOEA/D still suffers from a very long running time for MOPs with large problem sizes or expensive objective evaluations. In this paper, a parallel MOEA/D (pMOEA/D) using the hybrid MPI and OpenMP programming model is proposed for bi-objective optimization. The population in pMOEA/D is distributed among computing nodes. Each computing node runs an MPI process for inter-node communications while each processor core runs an OpenMP thread to execute the iterations assigned for its resident node. Experimental results on a multi-core cluster with four nodes show that the parallel algorithm achieves significant performances in terms of speedup.
刘靖伟、应伟勤、黄艳霞、谢悦鸿、吴昱
计算技术、计算机技术
多目标优化进化算法并行计算MPIOpenMP
Multiobjective optimizationevolutionary algorithmsparallel computingMPIOpenMP
刘靖伟,应伟勤,黄艳霞,谢悦鸿,吴昱.二目标空间中的一种并行分解型多目标进化算法[EB/OL].(2014-12-11)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201412-289.点此复制
评论