基于模块性指标的特征提取方法
Feature Extraction Method Based on Modularity Criterion
本文针对特征提取问题提出一种简单有效的实现方法。引入模块性指标作为评价特征变量敏感性的准则,根据特征变量对分类的贡献消除无关特征,实现特征变量约简;利用基于模块性指标优化的层次聚类算法合并具有相同特征的数据,得到最能反映该特征的典型数据,达到消除冗余数据的目的。标准数据集试验表明,新方法显著降低数据维数和训练样本集大小,在有效减少计算代价的同时提高分类的准确性。
In order to solve the existing problem of feature extraction, a simple applied method is introduced. In this paper, modularity criterion in network analysis is adopted to evaluate the sensitivity of feature variable to classification, and the feature attribute which has less contribution is eliminated. A hierarchical clustering algorithm based on the modularity criterion optimization is used to assemble the data with the same attribute, the most representative one that is the center of feature cluster is obtained and accordingly the data redundancy is settled. The applications to benchmark data show that the new method can not only reduce data dimension and the size of training set significantly, but also reduce the calculation cost while increasing accuracy of classification.
杜保华、杜海峰、王娜
计算技术、计算机技术
模式识别特征提取模块性指标层次聚类
Pattern RecognitionFeature ExtractionModularityHierarchical Clustering
杜保华,杜海峰,王娜.基于模块性指标的特征提取方法[EB/OL].(2010-11-26)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201011-660.点此复制
评论